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Wilcock (1946) that the layers have stopped on arriving 
at the side of a trigon. Very probably this is true only 
when the layers are thicker than a certain value. 

The writer wishes to thank Professor S. Tolansky for 
hospitality in his laboratory, where part of this work 
was done, and for many useful suggestions, Professor 
E. Sanero for his constant support and interest in the 
work, and Doctor H.Komatsu for some discussions 
on the subject. 
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The applicability of the Kikuchi model of the origin of P patterns in electron diffraction is discussed. 
With the use of this model the equation of Kikuchi lines is derived and examples are given of crystal- 
lographic measurements carried out with high accuracy by means of this equation. 

Introduction 

Various electron diffraction patterns for the case of a 
single crystal have been investigated. These can be con- 
ventionally classified into three types: N, L and P 
(Pinsker, 1949). 

Kikuchi (1928) proposed a geometrical model (Fig. 1) 
which is very simple but seems to be useful for de- 
scribing the geometry of P patterns. Finch, Quarell & 
Wilman (1935), Finch & Wilman (1936), and Wilman 
(1948) described some possibilities of this model. In 
the present paper we give (1) the derivation of the equa- 
tion of Kikuchi lines for an arbitrary experimental 
arrangement and (2) some examples of the practical 
applications of this equation. 

Applicability of the Kikuchi model 

Using the Kikuchi model we suppose the primary wave 
to be scattered by the first (upper) part of a thick crys- 
tal. The wave packet is obtained the wave vectors of 
which lie in a small solid angle in the vicinity of the 
direction of the incident wave. This wave packet is 
diffracted by the second (lower) part of the crystal. 
The well-known condition for the maximum of the 
intensity with respect to the crystal position (resulting 
from the diffraction theory at Born approximation) 
(Bohm, 1958) 

K 0 - K = H  (1) 
reduces then to 

IK011KI cos (K0,K)- K2= H K .  (2) 

Here K0, K, H are vectors of the incident and diffracted 
waves and of the reciprocal lattice, respectively. 

It is a matter of dynamical theory to give the limits 
for the validity of this model. But it seems clear we 
can use the model for the case of a thin crystal. Here 
the experiment may be arranged in such a way that 
we produce a suitable wave packet by means of an 
electron lens and we allow this packet to be diffracted 
by a crystal (Kossel & M611enstedt, 1942). 
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Fig. 1. Kikuchi geometrical model. 



M I C H A L  LENC 711 

Derivation of the equation of Kikuchi lines 

For practical use it is necessary to transform the equa- 
tion of Kikuchi cones (2) into a suitable reference 
frame. We shall give the form of this equation in a 
Cartesian reference frame arbitrarily placed in the plane 
of the screen (photographic plate). 

Let us denote by E~,E2,E3 the unit vectors of the 
space lattice (E1E2 = cos y, EzE3 = cos ~, E3E1 = cos ]3) 
and by S the vector ([S[/]KI)K=xEI+yEz+zE3. Then, 
using the relations IHI = 4n sin 0/2 = 2n/dh~z, where 
0=(1/2)(K0,K) is the Bragg angle, 2=2n/]K0l is the 
wave length of both primary and reflected electrons 
and dn~t is the spacing of the (hkl) plane, and putting 
co=h(dn~da), Iz=k(dhkt/b), v=l(dnkde), we obtain the 
equation of Kikuchi cones in the crystallographic 
reference frame (with unit basic vectors) 

S+MS = 0 (3a) 

where (i)  lCOS  OS ) 
S =  M =  09/./ ,t/2 ~/l,' - - s i n 2 0  /cosy 1 cos . 

coy/~v v2 \cos]3 cos 
(3b) 

Now we choose the following transformations to 
obtain a suitable orthogonal reference frame. (1) We 
turn E1,E2,E3 to the position EI,E~,E~ in the plane 
(El,E3), (EI,EE), (E~,E3) respectively, so that E]E~= 
EIE3=E~E.~=0. The transformation matrices are de- 
noted by Tp, T~, T~. (2) We turn the reference frame 
around E~,E]',E~" by an angle ~o,V, Z so that EI',E~" 
will be parallel to the screen and El" ,  E2" will lie in a 
choosen direction, respectively. The transformation 
matrices are denoted by T~, T~,, T z. 

The equation of the Kikuchi cone is then (in the 
Cartesian reference frame, two axes of which are paral- 
lel to the screen and one of them has a chosen direction) 

S +TMT+S= 0,  (4a) 
where 

T= TzTgT~T~TrT p . (46) 

The equation of the lattice plane is 

(coltv) T+S = O. (5) 

The equation of Kikuchi lines or the equation of 
the line of intersection of the lattice plane with the 
screen is obtained substituing z = L  in equations (4) 
and (5), L being the specimen to plate distance. 

The form of the transformation matrices is simple, 
for they describe a simple geometrical operation; 

sec ]3 0 - ctg ]3 ) 
7"p= 0 1 0 , 

0 0 1 

1 

(1 0i) T~ = - ctg y' sec y' , 
0 0 

0 o) 
1 0 , (6a) 

- c t g  a' sec a' 

where 

y' = cos-l[(cos y - c o s  ]3 cos c0/sin ]3], 
~'=cos-l[cos a/sin y'] ; (6b) (c s 0s, (i0 0) 

T~ = 1 0 , T~, = cos V - s i n  N , 
\ -  sin ~o 0 cos ~o sin V cos ~ ,o C°S -sin !) 

Tx= / sinZ cosz  • (6e) 
0 

Practical use of the equation of Kikuchi lines 

The equation of Kikuchi lines involves the following 
parameters: characteristics of the crystal position, that 
is the specimen to plate distance L and three angles 
q, V,Z; lattice characteristics, that is the lattice param- 
eters a, b, c and the angles of the crystallographic axes 
~,fl, y; the coordinates of vector H h,k, l; the electron 
wave length 2. 

In practice the pattern measurement is not of high 
accuracy in many cases and the well-known more ap- 
proximative expressions are adequate. Our formulae 
can then be used for estimations of the accuracy of 
these approximative expressions. 

Measurements taken from good P-patterns have an 
accuracy exceeding that obtained by other methods. 
We illustrate it by two examples here. 

(i) Measurement of the angle/3 of monoclinic lat- 
tices. We choose the position of the specimen so that 
9= f / = z = O  and the lines due to the planes (h~k~l~) and 
(hykflj), for which h~ = hi. Using equation (5) we obtain 
for the angle ]3 

]3=tg-l[xo/(nyo+ L)], n=(c/b)(k~-kj) /( l i - l~)  . (7) 

Here [x0,Y0] are the coordinates of the point of inter- 
section of the (h~k~h) with the (hjkflj) lines of intersec- 
tion with the plate, measured on the plate. Considering 
the accuracy of the measurements of x0, Y0 to be about 
1 × 10 -z, one can see that the accuracy of the deter- 
mination of the angle ]3 is very good. 

(ii) Precise determination of the orientation of the 
specimen. Let us rewrite equation (5) in the form 

alx + azy + a3L = 0.  (8) 

Having determined the equation of the line of inter- 
section of the (hkl) plane with the photographic plate, 
we obtain the values al,az, a3, and the value a3 is noth- 
ing else than the cosine of the angle between the per- 
pendiculars to the lattice plane (hkl) and to the screen. 

In our examples we have used equation (5) which 
is simpler than equation (4) of Kikuchi lines. We have 
supposed here the coordinate of the point on the line of 
intersection of the lattice plane with the plate to be 
the mean value of the coordinates of the corresponding 
points of the extinction and reflection lines. We shall 
give the accuracy of this approximation. Let C (Fig. 1) 
be the spot of the incident beam; P is a point on the 
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line of intersection of the lattice plane with the plate, 
and E and R are the corresponding points on the ex- 
tinction and reflexion Kikuchi lines respectively. An 
elementary calculation gives 

firel = ( R P -  PE)/(RP + PE) = tg 0 tg(O + ?).  (9) 

Here 0 is the Bragg angle and y is the deviation of 
the diffracting beam from the direction of the incident 
beam. 

It is useful to consider in individual cases whether 
it is better to use equation (5) (with the approximation 
given above) or equation (4) (where we need to know 
the wavelength). For practical details of pattern meas- 
urement see Wilman's (1948) paper. 

Conclusion 

Using the Kikuchi model the equation of Kikuchi lines 
has been derived in a quite general case, in which dif- 
fraction by the triclinic lattice in an arbitrarily chosen 

position takes place. Thus, we have shown the possi- 
bility of performing various crystallographic measure- 
ments with good accuracy. 

The author wishes to thank Dr J. Komrska for help- 
ful discussion and for his criticism of the manuscript. 
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The absorption coefficients of Mn, Fe and Ti have been measured to an accuracy of better than + 0.6 % 
with monochromatic Ag K~ radiation. The absorption coefficient for Fe is in excellent agreement with 
Cooper's measured value. 

Cooper (1965) measured the mass absorption coef- 
ficients of A1, V, Cr, Fe, Co, Ni and Cu. Utilizing 
Walter's (1927) empirical equation: 

(/~/Q) A = 2.64 x 10-2623"94}. 3 (1) 

in which P/0 = mass absorption coefficient 
A = atomic weight 
N =  Avogadro's number 
Z = atomic number 
2 = wavelength 

one may plot these values of (p/o)A versus Z TM and 
determine by interpolation the mass absorption coef- 
ficient of the other elements of this series. However, 
this method can lead to values which are only accurate 
to within 2% whereas precise intensity measurements 
require a determination of the absorption coefficient 
to less than 1%. This investigation is a direct deter- 
mination of the mass absorption coefficients of Mn, 
Fe and Ti. 

The experimental set-up employed a standard Gen- 
eral Electric XRD-5 spectrogoniometer with a high 
intensity Ag target tube operated at 40 kV, 25 mA, a 
singly bent lithium fluoride monochromator and pal- 
ladium filters. Scintillation counters were used to mon- 
itor the beam as well as determine I/Io. Positional 
micrometers located different areas of the specimen in 
the beam path. The monochromator geometry was ad- 
justed until the lattice parameter, a0, of a silicon single 
crystal (using a Cohen least-squares analysis) agreed 
with the most precise value of a0 available (Straumanis, 
Borgeaud & James, 1961). 

Three Mn specimens and one each of Fe and Ti were 
utilized in the absorption measurements. In order to 
optimize the accuracy of transmission measurements 
the thickness of all specimens was approximately equal 
to 2//1. The three electrolytic Mn plates,* purity 
99"787o, were approximately 0.006" thick. The first 

* The authors wish to thank Mr C.C.Whiting of Union 
Carbide Corporation for supplying the Mn plates. 


